طراحی مناسب‌ترین مدل هیبریدی پیش‌بینی قیمت آتی زعفران نگین در بورس کالای کشاورزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر، موسسه پژوهش‌های برنامه‌ریزی، اقتصاد کشاورزی و توسعه روستایی، تهران، ایران

2 استادیار پژوهشی، موسسه پژوهش‌های برنامه‌ریزی، اقتصاد کشاورزی و توسعه روستایی، تهران، ایران

چکیده

بورس کالای زعفران مانند هر بازار دیگری، همیشه با محدودیت‌ها و مسائل ساختاری روبرو بوده است و بخش عمده‌ای از این مشکلات مربوط به نوسانات قیمتی آن است. پیش‌بینی قیمت با استفاده از الگوهای مناسب می‌تواند کمک زیادی به کاهش ریسک قیمتی بازار آتی زعفران کند. سوال اساسی این است که در مواجهه با روش‌های متعدد پیش‌بینی قیمت، برای پیش‌بینی قیمت آتی زعفران کدام روش‌ها را باید انتخاب کرد؟ هدف از مطالعه حاضر، طراحی مناسب‌ترین مدل هیبریدی برای پیش‌بینی قیمت آتی زعفران نگین در بورس کالای کشاورزی است که از مجموعه مدل‌های غیرخطی الگوریتم ژنتیک، شبکه عصبی عمیق، جنگلی تصادفی، ماشین بردار پشتیان و روش مونت‌کارلو تشکیل شده است. در این مدل هیبریدی از الگوریتم ژنتیک برای تعیین وقفه بهینه سری زمانی قیمت، از شبکه عصبی عمیق، مدل جنگلی تصادفی و ماشین بردار پشتیبان برای پیش‌بینی سری زمانی قیمت و از روش مونت‌کارلو برای شبیه‌سازی محتمل‌ترین احتمال قیمت استفاده شده است. نتایج حاصل از این مطالعه نشان داد که دقت پیش‌‌بینی مدل هیبریدی «الگوریتم ژنتیک-شبکه عصبی عمیق-مونت‌کارلو» بیشتر از دو مدل «الگوریتم ژنتیک-جنگلی تصادفی-مونت‌کارلو» و «الگوریتم ژنتیک-ماشین بردار پشتیبان-مونت‌کارلو» است. بنابراین، استفاده از شبکه عصبی عمیق و محاسبه محتمل‌ترین احتمال قیمت با استفاده از روش مونت کارلو دقیق‌ترین پیش‌بینی قیمت زعفران با درجه اطمینان بالا و حداقل ریسک ارائه می‌دهد. بنابراین پیشنهاد می‌شود که مدیریت بورس کالاهای کشاورزی، فعالین بازار بورس، محققین و علاقه‌مندان فن پیش‌بینی از مزایای این مدل پیشنهادی در پیش‌بینی قیمت محصولات کشاورزی استفاده کنند.

کلیدواژه‌ها

موضوعات


  1. Borimnejad, V. & Bakeshloo, M. (2013). Forecasting the Price of Tomatoes: Comparison of Syncretistic Methods of Neural Network Auto-Regressive and ARIMA. Iranian Journal of Agricultural Economics and Development, 3(83): 89-103. (In Farsi)
  2. Das, S.P. & Padhy, S. (2015). A novel hybrid model using teaching learning-based optimization and a support vector machine for commodity future index forecasting. International Journal learning machine & Cyber, Springer. DOI: 10.1007/s13042-015-0359-0
  3. Duda, R.O., Hart, P.E. & Stork, D.G. (2011). Pattern classification. 2nd Edition. John Wiley & Sons, New York.
  4. (2019). World food and agriculture statistical pocketbook. Food and Agriculture Organization of the United Nations.
  5. Ghaderzadeh, H., Ahmadzadeh, Kh.  & Ganji, S. (2019). Determine the appropriate model to predict the price of Agricultural crops “A case of wheat, Alfa- Alfa and Potato crops. Journal of Agricultural Economics Research, 11(3), 23-40. (In Farsi)
  6. Ghahremanzadeh, M. & Rashid Ghalam, M. (2015). Seasonal forecasting of meat prices in Iran: Application of periodic autoregressive model. Iranian Journal of Agricultural Economics and Development Research, 46(3), 469-480. (In Farsi)
  7. Ghali-Zinoubi, Z. & Toukabri, M. (2019). The antecedents of the consumer purchase intention: sensitivity to price and involvement in organic product: moderating role of product regional identity. Journal of Trends in Food Science and Technology, 90, 175-179.
  8. Ghiass, M. (2014). An Introduction to the Monte Carlo Simulation Methods. Iranian Journal of Polymerization, 4(1): 67-77. (In Farsi)
  9. Guo, L., Chehata, N., Mallet, C. & Boukir, S. (2011). Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. Journal of Photogram Remote Sensing, 66(1), 56-66.
  10. Gurung, B., Singh, K.N., Paul, R.K., Panwar, S., Gurung, B. and Lepcha, L. (2017). An alternative method for forecasting price volatility by combining models. Journal of Communications in Statistics-Simulation and Computation, 46(6), 4627-4636.
  11. Hasan, M. M., Zahara, M. T., Sykot, M. M., Hafiz, R., & Saifuzzaman, M. (2020). Solving onion market instability by forecasting onion price using machine learning approach. 2020 International Conference on Computational Performance Evaluation (ComPE), 777–780.
  12. Hoseini, S.M., Mazandarani zadeh, H. & Nazari, B. (2021). Simultaneously management of surface and groundwater resources and increasing farmers' resilience to water scarcity by predicting the price of agricultural products and using GA (case study of irrigation and drainage network of Qazvin plain). Iranian Journal of Soil and Water Research, 52(2), 563-576. (In Farsi)
  13. Khosravi, M., Shams, A., Gholizadeh, H. & Hoshmandan Moghadam, Z. (2017). Investigating factors related to selling behavior of Saffron farmers in the Qaen Township. Journal of Saffron Agronomy and Technology, 5(1), 91-105 (In Farsi)
  14. Kyriazi, F., Thomakos, D. D., & Guerard, J. B. (2019). Adaptive learning forecasting, with applications in forecasting agricultural prices. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.03.031
  15. Liu, H. (2016). A domestic soybean Price forecasting model based on improved Quantile-RBF neural network, thesis, Nanjing agricultural university, Nanjing.
  16. Lu, L. (2018). Optimal γ and C for є-support vector regression with RBF Kernels. https://arxiv.org/pdf/1506.03942.pdf
  17. Luo, G.Q. and Zhou, L. (2016). Analysis on the trend of agricultural product price fluctuation under the new economic normal. Journal of Statistics and Decision, 32(21), 83-86.
  18. Mahida, S., & Patel, B. (2018). A review of the application of data mining techniques for vegetable price prediction, https://1library.net/document/
  19. Mahmoudi, K., Ketabdari, M.J. & Ghasemi, H. (2018). Hybrid wavelet-SVM method to predict the occurrence of abnormal waves. Journal of Hydraulilics, 13-1(131), 1-15. (In Farsi)
  20. Moghadasi, R. & Jaleh Rajabi, M. (2013). Comparison of combined and conventional models in forecasting prices of wheat, corn and sugar. Journal of Agricultural Economics Research, 5(2), 1-22. (In Farsi)
  21. Murugesan, R., Mishraa, E. & Krishnan, A.H. (2021). Deep learning based models: Basic LSTM, Bi LSTM, Stacked LSTM, CNN LSTM and Conv LSTM to forecast Agricultural commodities prices. Research square: https://doi.org/10.21203/rs.3.rs-740568/v1.
  22. Peng, C. (2014). Research on improving the formation mechanism of vegetable prices. Journal of Review of Economic Research, 62, 45-50.
  23. Profeta, A. and Hamm, U. (2019). Who cares about local feed in local food products? Results from a consumer survey in Germany. British Food Journal, 121(3), 711-724.
  24. Raikar, R.V., Wang, Ch-Yi., Shih, H.P., Hong, J.H. (2016). Prediction of contraction scour using ANN and GA. Flow Measurement and Instrumentation, 50, 26-34.
  25. Rasheed, A., Younis, M.S., Ahmad, F., Qadir, J. & Kashif, M. (2021). District wise price forecasting of wheat in Pakistan using deep learning. 04781
  26. Sangwana, K.S., Saxenaa, S. & Kanta, G. (2016). Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. The 22nd CIRP conference on Life Cycle Engineering, Procedia CIRP 29, 305-310.
  27. Schmidhuber, J., Pound, J., & Qiao, B. (2020). COVID-19: Channels of transmission to food and agriculture. FOA. https://doi.org/https://doi.org/10.4060/ca8430en
  28. Wang, L., Feng, J., Sui, X., Chu, X. & Mu, W. (2020). Agricultural product price forecasting methods: research advances and trend. British Food Journal, 122(7), 2121-2138.
  29. Wu, H., Zhu, M., Chen, W. & Chen, W. (2017). A new method of large-scale short-term forecasting of agricultural commodity prices: illustrated by the case of agricultural markets in Beijing, Journal of Big Data, 4, 1.
  30. Xiong, T., Li, Ch., Bao, Y., Hu, Zh. & Zhang, L. (2015). A combination method for interval forecasting of agricultural commodity futures prices, Knowledge-Based Systems 77, 92-102.
  31. Yang, X. (2007). A modified particle swarm optimizer with dynamic adaptation Baoding: applied mathematics and Computation 51, June-2007, Elsevier, 189, 1205-1213.
  32. Yang, Y., Chen, Y., Wang, Y., Li, C. & Li, L. (2016). Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting. Journal of Applied Soft Computing, 49: 663-675.
  33. Yeh, C., Chi, D.J. & Lin, Y.R. (2014). Going-concern prediction using hybrid random forests and rough set approach. Journal of Information Sciences, 254, 98-110.
  34. Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O. & Lee, K.K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, Journal of Hydrology, 396, 128-138.
  35. Zare Mehrjerdi, M.R., Mehrabi Boshrabadi, H., Nezamabadi-pour, H. & Tohidi, A. (2015). Evaluation of artificial neural network-panel data hybrid model in predicting Iran’s dried fruits export prices. Quarterly Journal of Economics Quarterly, 12(3), 95-116. (In Farsi)
  36. Zhang, D., Zang, G., Li, J., Ma, K., & Liu, H. (2018). Prediction of soybean price in China using QR-RBF neural network model. Journal of Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.08.016
  37. Zolfaghari, M., Sahabi, B. & Bakhtiari, M.J. (2020). Designing a model to predict the returns of the total stock market index (with an emphasis on the combined models of deep learning network and GARCH family models). Iranian Journal of Financial Engineering and Portfolio Management, 11(42): 138-171. (In Farsi)