بررسی مؤلفه های مؤثر بر انتشار دی‌اکسید‌کربن با تأکید بر نقش مصرف انرژی: مطالعه موردی کشورهای منطقه منا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشجوی دکتری گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشجوی دکتری گروه اقتصاد کشاورزی،‌دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 کارشناس ارشد گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

انتشار دی­اکسیدکربن یکی از مهم­ترین چالش‌های پیش روی انسان‌ها است که توجه بسیاری از محققان و سیاست‌گذاران را در سال‌های اخیر به خود معطوف داشته است. هدف پژوهش حاضر بررسی مولفه­های اثرگذار بر انتشار دی­اکسید­کربن با تاکید بر مصرف انرژی است. به­منظور دستیابی به هدف پژوهش، از الگوی اقتصادسنجی فضایی و داده­های تابلویی مربوط به انتشار دی­اکسیدکربن کشورهای منطقه منا در دوره زمانی 2015-2000 بهره برده شده است. نتایج گویای آن است که انتشار دی اکسید کربن در کشورهای منطقه منا اثری معنی‌دار بر کشورهای مجاور در این منطقه دارد. متغیرهای مصرف انرژی (010/0)، جهانی شدن اقتصادی (134/0)، صنعتی شدن (405/0) و شهرنشینی (042/0) اثری مثبت و معنی‌دار بر انتشار دی­ اکسید­کربن در منطقه منا دارد. افزون‌براین، مصرف انرژی اثر تقابلی مثبت و معنی‌داری با متغیرهای جهانی شدن (361/0)، صنعتی شدن (234/0) و شهرنشینی (085/0) بر انتشار دی­اکسید­کربن دارد. براساس نتایج، پیشنهاد می­شود که با رتبه­بندی ساختار تولید در صنایع مختلف داخلی، برنامه­ای جامع در جهت ارتقای ساختار تولید با فناوری­های مناسب در راستای کاهش مصرف انرژی در دستور کار قرار گیرد. از سوی ‌دیگر، ضرورت دارد سیاست‌گذاران در انتخاب راهکارهای سیاستی، تنها به منافع اقتصادی ملی توجه نکرده و منافع محیط‌زیستی ملی و منطقه‌ای را با توجه به تفاوت­های اقتصادی و صنعتی هر کشور در نظر گیرند.

کلیدواژه‌ها


  1. Alam, M.M., Murad, M.W., Noman, A.H.M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466-479.
  2. Al-Mulali, U., Tang, C. & Ozturk, I. (2015). Estimating the environment Kuznets curve hypothesis: evidence from Latin America and the Caribbean countries. Renewable & Sustainable Energy Reviews, 50, 918–924.
  3. Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical analysis, 20(1), 1-17.
  4. Anselin, L., & Florax, R.J. (1995). Small sample properties of tests for spatial dependence in regression models: Some further results. In New directions in spatial econometrics (pp. 21-74). Springer, Berlin, Heidelberg.
  5. Balado-Naves, R., Baños-Pino, J.F. & Mayor, M. (2018). Do countries influence neighboring pollution? A spatial analysis of the EKC for CO2 emissions. Energy Policy, 123, 266-279.
  6. Balogh, J.M. & Jambor, A. (2017). Determinants of CO2 Emission: A Global Evidence. International Journal of Energy Economics and Policy, 7(5), 217-226.
  7. Bello, M.O., Solarin, S.A. & Yen, Y.Y. (2018). The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: The role of hydropower in an emerging economy. Journal of Environmental Management, 219, 218-230.
  8. Bimanatya, T.E. & Widodo, T. (2018). Fossil Fuels Consumption, Carbon Emissions, and Economic Growth in Indonesia. International Journal of Energy Economics and Policy, 8(4), 90-97.
  9. Charfeddine, L., & Kahia, M. (2019). Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renewable Energy, 139, 198-213.
  10. Charfeddine, L., & Mrabet, Z. (2017). The impact of economic development and social–political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews, 76, 138–154.
  11. Chen, J., Wang, P., Cui, L., Huang, S. & Song, M. (2018). Decomposition and decoupling analysis of CO2 emissions in OECD. Applied Energy, 231, 937-950.
  12. Elhorst, J.P. (2010). Applied spatial econometrics: raising the bar. Spatial Economic Analysis, 5(1), 9-28.
  13. Elhorst, J.P. (2014). Dynamic spatial panels: models, methods and inferences. In Spatial Econometrics (pp. 95-119). Springer, Berlin, Heidelberg.
  14. Esmaeili, A., & Fathi, F. (2012). Relationship between Energy Consumption, Income and Carbon Dioxides Emission in Iran. Iranian Journal of Agricultural Economics and Development Research, 43(2), 175-181. (In Farsi)
  15. Farhani, S. (2013). Renewable energy consumption, economic growth and CO2 emissions: Evidence from selected MENA countries, Energy Economics Letters, No. 1, pp. 24–41.
  16. Haghighat, J., Shokri, T., Khodaverdizadeh, M., & Khodaverdizadeh, S. (2017). The Effect of Tourism Development and Economic Growth on CO2 Emissions in Kuznets Curve in Selected Islamic Countries (Non-linear Approach PSTR). Tourism Planning and Development, 19, 8-32. (In Farsi)
  17. Hanif, I. (2018). Impact of fossil fuels energy consumption, energy policies, and urban sprawl on carbon emissions in East Asia and the Pacific: A panel investigation. Energy Strategy Reviews, 21, 16-24.
  18. Haug, A.A. & Ucal, M. (2019). The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships. Energy Economics, 81, 297-307.
  19. Iwata, H., Okada, K. & Samreth, S. (2012). Empirical study on the determinants of CO2 emissions: evidence from OECD countries. Applied Economics, 44, 3513-3519.
  20. Jebli, M.B. & Youssef, S.B. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological Indicators, 74, 295-301.
  21. Kahia, M., Kadria, M., Ben Aissa, M.S., & Lanouar, C., (2017). Modelling the treatment effect of renewable energy policies on economic growth: Evaluation from MENA countries. Journal of Cleaner Production, 149, 845–855.
  22. Kang, Y.Q., Zhao, T., & Yang, Y.Y. (2016). Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecological Indicators63, 231-239.
  23. Kargar Dehbidi, N., & Esmaeili, A. (2017). The effects of economic growth, energy consumption, trade openness and urbanization on environmental pollution In the MENA region during the period 1995- 2012. Iranian Journal of Agricultural Economics and Development Research, 47(4), 815-824. (In Farsi)
  24. Kelejian, H.H., & Prucha, I.R. (2010). Spatial models with spatially lagged dependent variables and incomplete data.Journal of geographical systems, 12(3), 241-257.
  25. Khan, I., Khan, N., Yaqub, A. & Sabir, M. (2019). An empirical investigation of the determinants of CO2 emissions: evidence from Pakistan. Environmental Science and Pollution Research, 26(9), 9099-9112.
  26. Kim, Y., Ok, J., Vithanage, M., Park, Y., Lee, J. & Kwon, E.E. (2019). Modification of Biochar Properties Using CO2, Chemical Engineering Journal, 372, 383-389.
  27. Kivyiro, P. & Arminen, H. (2014). Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: causality analysis for Sub-Saharan Africa. Energy, 74, 595–606.
  28. Kohansal, M. R., & Shayan, M. S. (2016). The Interplay Between Energy Consumption, Economic Growth And Environmental Pollution: Application Of Spatial Panel Simultaneous-Equations Model. Journal of Iranian Energy Economics, 5(19),179-216.
  29. Lin, B., & Benjamin, N. L. (2019). Determinants of industrial carbon dioxide emissions growth in Shanghai: A quantile analysis. Journal of Cleaner Production, 217, 776-786.
  30. Liu, Q., Wang, S., Zhang, W., Li, J., & Kong, Y. (2019). Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives. Applied Energy, 236, 163-171.
  31. Liu, Y., Xiao, H., Lv, Y., & Zhang, N. (2017). The effect of new-type urbanization on energy consumption in China: A spatial econometric analysis. Journal of Cleaner Production, 163, S299-S305.
  32. Liu, Z., Zhang, Z., Jia, Z., Zhao, L., Zhang, T., Xing, W., Komarneni, S., Subhan, F. & Yan, Z. (2018). New strategy to prepare ultra-micro porous carbon by ionic activation for superior CO2 capture. Chemical Engineering Journal, 337, 290-299.
  33. Magazzino, C. & Cerulli, G. (2019). The Determinants of CO2 Emissions in MENA Countries: A Responsiveness Scores Approach. International Journal of Sustainable Development & World Ecology, 1-13.
  34. Mamipour, S., Beheshtipour, H., Feshari, M., & Amiri, H. (2019). Factors influencing carbon dioxide emissions in Iran’s provinces with emphasis on spatial linkages. Environmental Science and Pollution Research, 1-14.
  35. Mirshojaeian Hosseini, H., Rahbar, F., Pourrostami, N. (2012). Spatial Autocorrelation of CO2 Pollution through the Spatial Spillover of Goods Governance in Middle Eastern and North African Countries. Journal of Environmental Studies, 38(1), 83-92.
  36. Mohammadi, H, and Tirgari M. (2013). The relationship between economic growth, trade liberalization and environmen pollution: review of selected Middle East countreis. Energy and Environment Economics, 2 (6), 183-207.
  37. Mousavi, S.N. (2015). The effect of trade liberalization on the quality of the environment evidence developed and developing countries. Iranian Journal of Agricultural Economics and Development Research, 46(3), 623-632. (In Farsi)
  38. Omri, A. (2013). CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy economics, 40, 657-664.
  39. Pazienza, P. (2019). The impact of FDI in the OECD manufacturing sector on CO2 emission: Evidence and policy issues. Environmental Impact Assessment Review, 77, 60-68.
  40. Perera, F. (2018). Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health, 15, 1-17.
  41. Sasana, H., & Ghozali, I. (2017). The impact of fossil and renewable energy consumption on the economic growth in Brazil, Russia, India, China and South Africa. International Journal of Energy Economics and Policy, 7(3), 194-200.
  42. Shahbazi, K., Hamidi Razi, D., Feshari, M. (2015). Investigating the Factors Affecting Air Pollution Emissions in Caspian Sea Countries: Panel Spatial Durbin Model. Journal of Environmental Studies, 41(1), 107-127.
  43. Tamizi, A. (2019). Economic and Environmental Factors Determining the Amount of Carbon Dioxide Emissions in the MENA Countries. Journal of Urban Economics and Management, 7(26), 115-130.
  44. Tobler, W.R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, 46, 234-240.
  45. Uzar, U. & Eyuboglu, K. (2019). The nexus between income inequality and CO2 emissions in Turkey. Journal of Cleaner Production, 227, 149-157.
  46. Waheed, R., Chang, D., Sarwar, S. & Chen, W. (2018). Forest, agriculture, renewable energy, and CO2 Journal of Cleaner Production, 172, 4231-4238.
  47. Wang, S., Zeng, J., Huang, Y., Shi, C. & Zhan, P. (2018). The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis. Applied Energy, 228, 1693-1706.
  48. World Bank. (2019). World Bank Database. https://data.worldbank.org/ .
  49. Yang, S., Wang, Y., Ao, W., Bai, Y. & Li, C. (2018). Prediction and Analysis of CO2 Emission in Chongqing for the Protection of Environment and Public Health. International Journal of Environmental Research and Public Health, 15, 1-15.
  50. Yang, Y., Zhou, Y., Poon, J., & He, Z. (2019). China's carbon dioxide emission and driving factors: A spatial analysis. Journal of Cleaner Production, 211, 640-651.
  51. You, W. & Lv, Z. (2018). Spillover effects of economic globalization on CO2 emissions: A spatial panel approach. Energy Economics, 73, 248-257.
  52. Yu, Y., Deng, Y. & Chen, F. (2018). Impact of population aging and industrial structure on CO2 emissions and emissions trend prediction in China. Atmospheric Pollution Research, 9(3), 446-454.
  53. Yu, Y. and Xu, W. (2019). Impact of FDI and R&D on China's industrial CO2 emissions reduction and trend prediction. Atmospheric Pollution Research, Available online 5 June 2019.
  54. Zhao, X., Burnett, J.W., & Fletcher, J.J. (2014). Spatial analysis of China province-level CO2 emission intensity. Renewable & Sustainable Energy Reviews, 33, 1–10.
  55. Zhang, J. (2015). Carbon emission, energy consumption and intermediate goods trade: a regional study of East Asia. Energy Policy, 86, 118-122.
  56. Zhang, Y., Jin, Y., Chevallier, J. & Shen, B. (2016). The effect of corruption on carbon dioxide emissions in APEC countries: A panel quantile regression analysis. Technological Forecasting & Social Change, 112, 220-227.
  57. Zhang, Q., Yang, J., Sun, Z., & Wu, F. (2017). Analyzing the impact factors of energy-related CO2 emissions in China: what can spatial panel regressions tell us?. Journal of Cleaner Production, 161, 1085-1093.
  58. Zhou, C. & Wang, S. (2018). Examining the determinants and the spatial nexus of city-level CO2 emissions in China: A dynamic spatial panel analysis of China's cities. Journal of Cleaner Production, 171, 917-926