اثرات تغییر اقلیم بر الگوی کشت محصولات زراعی (مورد مطالعه: دشت مشهد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه اقتصادکشاورزی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

2 دانشیار گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

3 استاد گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

4 استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

چکیده

اقلیم و تغییرات آن در دهه­های اخیر به یکی از مسائل مهم و مطرح جهانی و به­عنوان یکی از معضلات عمده زیست محیطی تبدیل شده است. بخش کشاورزی یکی از اولین بخش­هایی است که تحت تأثیر این تغییرات قرار می­گیرد؛ چراکه کشاورزان قادر نیستند شرایط اقلیمی را کنترل کنند؛ اما مدیریت و تغییر در عواملی چون رقم محصول و بهینه­سازی الگوی کشت مطابق با اقلیم منطقه، می­تواند آثار سوء این تغییر اقلیم را بر رشد و عملکرد محصولات کشاورزی کاهش دهد و در تولید پایدار مواد غذایی نقش بسزایی داشته باشد. لذا در این پژوهش، به بررسی اثرات ناشی از تغییر اقلیم بر الگوی کشت زراعی دشت مشهد پرداخته شده است. آمار و اطلاعات مورد نیاز پژوهش از طریق سازمان جهاد کشاورزی خراسان رضوی، سازمان هواشناسی و همچنین مصاحبه حضوری با کارشناسان کشاورزی و کشاورزان دشت مشهد جمع­آوری گردیده است. نتایج حاصل از این پژوهش نشان می­دهد که مقادیر بارندگی، دمای بیشینه و کمینه­ی فصلی روند افزایشی دارد و این تغییرات دارای اثر معنی­داری بر عملکرد محصولات زراعی منطقه هستند. همچنین با درنظرگرفتن سناریوهای تغییرات اقلیم (تا سال 1410) در دوره کاشت هریک از محصولات مورد مطالعه، مقادیر سطح زیرکشت آنها تغییر یافته و سود ناخالص کشاورزان نسبت به سال پایه (1393) 6/1 درصد افزایش می­یابد. در نهایت نتایج پژوهش حاکی از این است که بیشترین تغییرات در عملکرد بر اثر شرایط اقلیمی مربوط به محصولات گندم و جو می­باشد؛ بنابراین لازم است تا سیاست­گذاران به این موضوع توجه داشته­باشند تا ریسک تولید این محصولات را کاهش دهند و از کاهش تولید این محصولات استراتژیک جلوگیری نمایند.

کلیدواژه‌ها


  1. Agricultural Organization of Khorasan Razavi (www. koaj.ir). In Farsi.
  2. Aksorn, P., and Srinilta, Ch. (2011), Statistical Downscaling for rainfall and temperature prediction in Thailand. Proceedings of the international multi conference of engineers and computer scientists. MARCH 16 – 18, Hong Kong.
  3. Asghari Moghadam, A., Nourani, v. and Nadiri, a. (2008), Modeling rainfall of Tabriz plain using artificial neural networks. Journal of Agricultural Science, 18(1): 1-15. In Farsi.
  4. Ashrafi, B., Mousavi Baghi, M., Kamali, Gh. and daavari, k.(2011), Forecast seasonal variations of climate parameters over the next 20 years using the exponential downscaling data of the HADCM3 model. Water and Soil Journal, 25(4): 945-957. In Farsi.
  5. Azuara, J., Howitt, R., MacEwan, D., and Lund, J. (2011), Economic impacts of climate-related changes to California agriculture. Journal of Climatic Change, 109: 387-405.
  6. Blanco, M., Cortignani, R., and Severini, S.(2007), Evaluating changes in cropping patterns due to the 2003 CAP reform, an ex-post analysis of different pmp approaches considering new activities. Presentation at the 107th EAAE Seminar Modelling of Agricultural and Rural Development Policies.
  7. Bodri, L., and Cermak, V. (2000), Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. International Journal of Advances in Software Engineering Research Methodology, 31: 311–321.
  8. Bodri, L., and Cermak,V.(2003), prediction of surface air temperatures by neural  network. Journal of Studia Geophysica ET Geodaetica, 47: 173-184.
  9. Bustami, R., Bessaih, N., Bong, Ch., and Suhaili, S. (2007), Artificial neural network for precipitation and water level predictions of Bedup River.  IAENG International Journal of Computer Science, 34:2-10.

10. Chijioke, O.B., Haile, M., and Waschkeit, C. (2011), Implication of climate change on crop yeild and food accessibility in sub-Sahran Africa. MSc Thesis, Bon University.

11. Chungi, S.O., Rodri'guez-di'az2, J. A., weatherhead, E. K., and Knox, J. W.(2011), Climate change impacts on water for irrigating paddd rice in south Korea. Journal of irrigation and drainage, 60: 263-273.

12. Connor, J., Kirby, M., Schwabe, K., Liukasiewics, A., and Kaczan, D.(2008), Impacts  of  Reduced Water Availability on Lower Murray Irrigation, Australia, Socio-Economics  and  the  Environment  in Discussion. CSIRO working paper series.

13. Conrads, P.A., and Roehle, E. A.(1999), Comparing Physics- Based and Neural Network Mo Simulating Salinity, Temperature and Dissolved in a Complex, Tidally Affected River Basin. Proceeding of the South Carolina Environmental Conference. March 15-16.

14. Diaz-Robles, L. A., Ortega, J. C., Fu, J. S., Reed, G. D., Chow, J. C., Watson, J. G., and Moncada-Herrera, J. A. (2008), a hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas. Journal of Atmospheric Environment, 42: 8331-8340.

15. FAO, WFP, and IFAD. (2012), The state of  food insecurity in the world: economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition, food and agricultural organization of the united nations (FAO), the international fund for agricultural  development (IFAD), and the world food programming (WFP), FAO, Rome, Italy.

16. Fulop, I. A., Jozsa, J., and Karamer, T. (1998), a neural network application in estimating wind induced shallow lake motion, Journal of Hydro informatics, 98: 753-757.

17. Hadley center. 2006. Effect of climate change in the developing countries.UK Meteorological Office.

18. Hashmi, M. Z., Shamseldin, A., and Melville, B. (2009), downscaling of future rainfall extreme events: a weather generator based approach. 18th World IMACS/ MODSIM Congress. Cairns. Australia. July 13–17.

19. Hazel, P., and Norton, R. D. (1986), Mathematical Programming for Economic Analysis in Agriculture. Colli MacMillan Pub. London.

20. Hosseini, A. (2009), Estimation and analysis of maximum temperatures in Ardabil using Artificial Neural Networks. Journal of Geographical Research. 25(3): 57-78. In Farsi.

21. Hung, N.Q., Babel, M. S., Weesakul, S., and Tripathi, N. K. (2008), an artificial neural network model for rainfall forecasting in Bangkok. Journal of Hydrology and Earth Sciences Discussion, 5: 183-218.

22. IPCC. (2007), Summary for policy makers Climate change: The physical science basis.  Contribution of working group I to the forth assessment report. Cambridge University Press.

23. IPCC. (2013), Summary for policymakers. Fifth assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. Midgley, P.M.  (Eds.)]  Cambridge University Press, Cambridge, United Kingdom and New York.

24. Kaul, M., Hill, R. L., Walthall, C. (2005), Artificial neural networks for corn and soybean yield prediction. Journal of Agricultural System, 85: 1–18.

25. Kemfert, C. (2009), Climate Protection Requirements the Economic Impact of Climate Change. Handbook Utility Management, 725-739.

26. Kuchaki, A. (2015), Adaptation Approaches and Reducing Climate Change Dangers in Agriculture. Oral Collections presented at the Workshop on Climate Change and Low Carbon Technologies, May. In Farsi.

27. Mishra, A.K., and Desai, V.R. (2006), Drought forecasting using feed-forward recursive neural network International Journal on Ecological Modelling, 198:127–138.

28. Mislan, M., Haviluddin, H., Hardwinarto, S., Sumaryono, B., and Aipassa, M.(2015), Rainfall monthly prediction based on Artificial Neural Network: A case study in Tenggarong Station, East Kalimantan – Indonesia. Journal of Computer Science,    59: 142 –151.

29. Mitchell,  T. (2003),  Pattern  Scaling:  An  Examination  of  Accuracy  of  the  Technique  for  Describing Future Climates. Journal of Climatic Change, 60: 217-242.

30. Noferesti, M. (1999), Unit root and co-integration in econometrics. The first edition expressive Institute Publications, Tehran. In Farsi.

31. Ozkan, B., and Akcaoz, H. (2002), Impacts of climate factors on yields for selected crops in southern Turkey. Journal of Mitigation and Adaptation Strategies for Global Change, 7: 367–380.

32. Ranjithan, J., Eheart, J., and Garrett, J. H. (1995), Application of neural network in groundwater remediation under condition of uncertainty. New Uncertainty conception Hydrology and Water Resources, 133-140.

33. Redsma, P., Lansink, A., and Ewert, F. (2009), Economic impacts of climatic variability and subsidies on european agriculture and observed adaptition strategies. Journal of Mitigation and Adaptation Strategies for Global Change, 14:35-59.

34. Reilly, J. (1999), what does climate change mean for agriculture in developing countries? A comment on mendelsohn and dinar.  Journal of World Bank, 14: 295-305.

35. Semenov, M.A. (2008), Simulation of extreme weather events by a stochastic weather generator. Climate Research, 35: 203-212.

36. Shafie, A.H., El-Shafie, A., Hasan, G., Mazoghi, A., and Mohd, R. (2011), artificial neural network technique for rainfall forecasting applied to Alexandria. International Journal of the Physical Sciences, 6: 1306-1316.

37. Statistical Yearbook of Khorasan Razavi Province; (2013).

38. Taghdisian,h., and Minapur, s.(2003), Climate change, what we need to know. Environmental Research Center Publications Environmental Protection Agency. National Weather Office, Tehran. In Farsi.

39. Terry, G. (2011), Climate, change and insecurity: Views from a Gisu hillside. Doctoral thesis, University of East Anglia.

40. Wang, Z.L., and sheng, H.H. (2010), Rainfall prediction using generalized regression neural network. International Conference on Computational and Information Sciences. December17-19.

41. Withey, P., and Kooten, C. (2011), The effect of climate change on land use and wetlands conservation in western Canada.Resource Economics & Policy Analysis. Research Group Department of Economics University of Victoria.