مقایسه مدل های سنجش کیفیت خدمات در ارزیابی دانشجویان از کیفیت فرایند تدریس و یادگیری با استفاده از شبکۀ عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکدة اقتصاد و توسعة کشاورزی، دانشگاه تهران

2 دانشجوی کارشناسی ارشد آموزش کشاورزی، دانشگاه تهران

3 استاد دانشکدة مهندسی فناوری کشاورزی، دانشگاه تهران

چکیده

هدف از این مطالعه تعیین و ارزیابی کمی موقعیت کیفی فرایند تدریس و یادگیری در مراکز آموزش عالی کشاورزی است. به این منظور، از توانمندی شبکه‌های عصبی مصنوعی در مدل‌سازی روابط غیر خطی، برای بررسی و ارزیابی مدل‌های مختلف سنجش کیفیت خدمات استفاده شد. جامعة آماری، دانشجویان تحصیلات تکمیلی رشته‌های کشاورزی دانشگاه فردوسی مشهد (1070نفر) است که با استفاده از جدول مورگان 280 پرسشنامه جمع‌آوری شد و درنهایت 202 پرسشنامه تجزیه و تحلیل شد. به‌منظور بررسی و ارزیابی کیفیت فرایند تدریس و یادگیری از چهار مدل سروپروف غیر وزنی، سروکوآل غیر وزنی، سروپرف وزنی و سروکوآل وزنی به کمک شبکه‌های عصبی مصنوعی استفاده شد. نتایج به‌کارگیری رویکرد شبکه‌‌های عصبی مصنوعی نشان داد مدل سروکوآل وزنی با دقت بیشتری قادر به ارزیابی کیفیت تدریس و پیش‌بینی رضایت است. این مدل با معماری 7-29-14-1 یعنی 7 نرون در لایة ورودی، 29 و 14 نرون در لایه‌های مخفی اول و دوم و یک نرون در لایة خروجی، به‌عنوان بهترین راه حل برای تخمین ارزیابی کیفیت انتخاب شد. این معماری دارای ضریب همبستگی 96/0 بود و مقایر MAE، MSE و MAPE آن به‌ترتیب 18/0، 06/0 و 41/4 درصد داشتند.

کلیدواژه‌ها


Abzari, M., Mansouri, H. & Vahedi, S. (2011). Studying and assessing of electrical power industry services quality evaluate models. Proceedings of Twenty-Sixth International Conference on Electricity. October 31 & Novenber 1-2, 2011, Tehran, Iran,(In Farsi).
Aghamolaei T., Zare S., & Abedini S. (2006). The quality gap of educational services from the point of view of students in Hormozgan university of medical sciences. Strides in Development of Medical Education,3, (2), 78-85(In Farsi).
Ahmad, Shaukat, .M.Z., Usman, A., Rehman, W., & Ahmed,  N. (2010). Does service quality affect students’ performance? Evidence from institute of higher learning. African Journal of Business Management. 4, (12), 2527-2533.
Aldridge, S., & Rowley, J. (1998). Measuring customer satisfaction in higher education,  Quality Assurance in Education, 6, ( 4), 197-204.
Asubonteng, P., & McCleary K. J. (1996). Servequal  revisited: a critical review Of service quality, The Journal of ServicesMarketing, 10, ( 6),62-81.
Bahraini, K., Shahalizadeh Kalkhoran, M.,& Nouraie, F.. (2009). Services Quality Study in  Islamic Azad University based on SERVQUAL model and QFD (A Case Study, Islamic Azad University of Aliabad Katol). Journal of Management, 6, (11), 62-79.
Behara, R., Fisher, W.W., & Lemmink, G. A. M. (2002). Modeling and evaluating quality measurement using neural networks. International Journal of Operations & Production management, 22 (10), 1162 -1185.
Chang-long, W., Yan-ming, Q.(2009) Quality evaluation of universities undergraduate practice teaching work based on artificial neural network. Computational Intelligence and Natural Computing. International Conference on, 6-7 June,393-396.
Cronin, J. & Taylor, S. A. (1994). Servperf versus Servqual: Reconciling performance- minus- expectations measurement of service quality, Journal of Marketing, 58, (1) , 125 – 131.
Hayes, B.E. (1997). Measuring customer satisfaction ,Development and Use of Questionnaires Publisher, ASQ Quality, 2 Sub Edition.
Jaw deng, W., Chin Chen. W., & Pei, W. (2008). Back-Propagation Neural Network based Importance Performance Analysis for Determining Critical Service Attributes. Expert System with Applications. 34, 1115- 1125.
Jun-qiao, Q., Chang-long, W.,  Yan-ming, Q.(2009) The application on the evaluation of quality of universities undergraduate theory teaching work based on artificial neural network. Information Assurance and Security, Fifth International Conference on, 18-20 Aug,387-390.
Kebriaei A., &  Roudbari M.( 2005). The quality gap in educational services at Zahedan university of medical sciences: Based on student’ perceptions and expectations.  Iranian Journal of Medical Education, 5, (1), 53-61(In Farsi).
Levinthal, C.F., Lansky, L.M.,Andrews, S.(2001). Student evaluations of teacher behaviours as estimations of real ideal discrepancies: a critique of teacher rating methods, Journal of educational psychology,.62, ( 2), 104-109.
Lihua, L., Fuming, L., Changlong, W.(2009). Study on undergraduate teaching job quality assessment based on artificial Fish-BP neural network. Services Science, Management and Engineering, International Conference on. 11-12 July, 246-249.
Maroofi, Y., Kiamanesh, A., Mehr Mohammadi, M., & Ali Askari, M. (2007). Teaching Quality Assessment in Higher Education: Examine some Views. Journal of Curriculum Studies, 5 (In Farsi).
Marsh, H.W., Muthen, B.,Asparouhow, T.,Ludtke, O., Robitzsch, A., Morin, A., & Trautwein, U. (2009). Exploratory  structural equation modeling, integrating CFA and EFA; application to student. Evaluations of University TeachingStructural Equation Modeling, 16, 439-476.
Mir Fakhroddini, H., Taheri Demne, M., & Mansouri, H. (2010). Artificial neural network a new method in measure service quality academic libraries, Journal of Librarianship and Information Science, 1, (13)(In Farsi).
Mir Ghafouri, H., Taheri, M., & Zare Ahmad Abadi, H. (2009). Services quality measuring methods evaluation by artificial neural networks. Management view, 31, 63-79 (In Farsi).
Munawarkhan, M., Ahmed, I., & Musarrat Nawaz, M.(2011). Student’s Perspective of Service Quality in Higher Learning Institutions; An evidence Based Approach, International Journal of Business and Social Science. 2, ( 11), 159-164.
Okumufi, A. & Duygun, A. (2008). Services quality measurement on education services marketing and relationship between perceived service quality and student satisfaction, Anadulu University Journal Of Social Sciences. 8 ,(2), 17–38.
Oliveira, o., & Ferrera ,e. (2009). Adaptation and application of the Servequal scale in higher education , POMS 20th Annual Conference,(May 1-4). Relationship Management Approach, 2nd ed., Wiley, Chichester.
Raoufi, Sh., Sheykhian, A., Ebrahimzadeh, F., Tarahi, M. J., & Ahmadi, P. (2010). Designing a New form of Theoretical Teaching Quality Evaluation based on Stakholder Perspectives and Six Principles of Classical Knowledge Research.  Hormozgan Medical Journal, 3 (In Farsi).
Safari, S. (2011). Characteristics of the  teaching – learning process  in higher education, Journal of Engineering Education in Iran, 50, 90-73(In Farsi).
Shabani Varaki, B., Hosseingholizdeh, R.(2006). Investigation of the Teaching Quality in University,  Journal of Research and Planning in Higher Education , 1, (39), 1-22(In Farsi).
Shabani Varaki, B., Javidi, T., & Farrokhzad, H. (2008). Evaluation of Teaching Quality in Higher Education Institutions Applied Science Agricultural Jihad”;Journal of Education and Development. 6 (In Farsi).
Stodnick, M., Rogers, P. (2008). Using Servqual to measure the quality of the classroom experience, Decision Sciences Journal of Innovative Education.1, (6), 115-133.
Wang, X., Xu, J.(2009). The model of teaching quality evaluation based on BP neural networks and Its application. Education Technology and Computer Science. First International Workshop on. 7-8 March,916-919.
Yan-ming, Q., Chang-long, W., &  Kai,Y.(2009). Evaluation of classroom teaching quality in universities based on artificial neural network, Control, Automation and Systems
Engineering, 2009. CASE 2009. IITA International Conference on, 11-12 July,513-516.
Yı lmaz, V., Filiz, Z., & Yaprak, B. (2007). Service quality measurement  in the turkish higher education system with  Servequal method, 7, )1), 299-316.
Zolfaghar, M., & Mehr Mohammadi, M.(2004). Student Evaluation of Teaching Quality of Human Sciences Faculty of Tehran Universities. Journal of Shahed University, 6 (In Farsi).