اثرات اقتصادی و محیط‌زیستی کاربرد پساب با کمک برنامه ریزی امکانی محدودیت شانس استوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اقتصاد کشاورزی، دانشکده کشاورزی،دانشگاه تربیت مدرس، تهران، ایران

2 گروه اقتصاد کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه اقتصادکشاورزی، دانشگاه تربیت مدرس، تهران، ایران

4 گروه اقتصاد کشاورزی دانشگاه تربیت مدرس، تهران، ایران.

10.22059/ijaedr.2024.367113.669262

چکیده

مدیریت و کنترل آلودگی منابع آب همزمان با تخصیص منابع آب میان مصارف مختلف توسعه اجتماعی-اقتصادی و محیط زیستی را به همراه دارد. منابع آب سطحی جنوب استان تهران به واسطه تخلیه فاضلاب‌های خانگی و صنعتی در بالادست دارای بار آلودگی بالایی می‌باشد ولی این منابع برای آبیاری در بخش کشاورزی مورد استفاده قرار می‌گیرد و این امر مشکلات محیط زیستی فراوانی را به دنبال داشته است. برای رفع این مشکل طرح احداث تصفیه خانه‌های آب‌های سطحی در جهت استفاده از پساب حاصل از تصفیه خانه‌ها در بخش کشاورزی و صنعت در نظر گرفته شده است. هدف از این مطالعه بررسی اثرات اقتصادی و محیط زیستی استفاده از پساب حاصل از این تصفیه خانه‌ها در دشت جنوب استان تهران می‌باشد. در این مطالعه از یک مدل هیدرو- اقتصادی در شرایط عدم قطعیت استفاده شده است. نتایج نشان می‌دهد که در شرایط فعلی در منطقه دستیابی به بهینه اقتصادی- محیط زیستی بدون کاهش سود در بخش کشاورزی و سود سیستم امکان پذیر نیست. به طوریکه به ازای کاهش هر یک تن نیترات وارد شده به منابع آب سطحی به واسطه کاهش سطح فعالیت‌های اقتصادی، سود سیستم 36167 میلیون ریال کاهش می‌یابد. به عبارت دیگر یک مبادله بین سود و تلفات نیترات وجود دارد که می‌توان با اعمال راهکارهایی همانند کاربرد پساب در منطقه، استفاده از پتانسیل کودی منابع آب و بهبود سیستم آبیاری و یا افزایش سطح میزان تصفیه فاضلاب تولید شده در بخش صنعت و شهری کاهش سود سیستم را جبران نمود.

کلیدواژه‌ها

موضوعات


Extended Abstract

Objectives

Surface water sources have a high pollution load in the south of Tehran Province due to the upstream discharge of domestic and industrial wastewater. However, these sources are used for irrigation in the agricultural sector, leading to environmental problems. To solve this problem, a plan is to build the irrigation network and surface water treatment plants before using the water for agricultural and industrial purposes. The present study aims to investigate the economic and environmental effects of controlling nitrate input on water resources, which is to be accomplished by implementing the treated wastewater application plan in industrial and agricultural sectors and applying environmental constraints. The results will be subsequently compared with the status quo where polluted water is used for irrigation of agricultural lands.

 

Methods

A simulation-optimization model was used to investigate treated wastewater's economic and environmental effects. The SWAT model is used as a simulation model. The SWAT model has been used to compute the amount of surface runoff from and the amount of nitrate transported with surface runoff from agricultural fields. The results of the SWAT model will be entered as input in the robust feasibility chance constraint programming. The robust feasibility chance constraint programming will effectively deal with uncertainties existing in water resource systems.

 

Results

Applying environmental constraints will increase the contribution of crops that cause less pollution, so that the share of orage corn increases from 26 to 36 percent in the economic optimal state compared to the economic-environmental optimal state. The results indicate that under the existing conditions, the net system benefit will decrease in pursuit of the economic-environmental optimal state. So that for reducing each ton of nitrate input to water resources due to the reduction of the level of economic activities, the net system benefit is reduced by 36167 million rials.

 

Discussion

The cultivation area and the net system benefit will be reduced by applying environmental constraints compared to optimal economic situation in the study area. The decline in benefit can be compensated by adopting solutions such as the application of treated wastewater, using the fertilizer potential of water sources or increasing the treatment level of the wastewater generated in industrial and municipal sectors. According to the results, the required nitrogen fertilizer for the crop will be provided by using the fertilizer potential of treated wastewater and groundwater, which will reduce the amount of nitrogen leaching into the soil and water sources in the region. In fact, it can be claimed that treated wastewater is both a source of water and a source of nutrients in the agricultural sector. It is also possible to allocate more conventional water resources to the municipal sector by treated wastewater allocating to the industry and agriculture sectors.

Abedi, M. J. Najafi, P. (2001). Use of treated wastewater in agriculture. National Committee for Irrigation and Drainage of Iran, Ministry of Energy, First Edition, Tehran (in Persian).
Amini, M. And Ebrahimian, H. (2016) Investigation of nitrate leaching and nitrogen uptake by maize under irrigation conditions with raw and treated effluent. Journal of Water and Soil (Agricultural Sciences and Industries). Volume 31. (3): 785-796 (in Persian). http://doi.10.22067/jsw.v31i3.52789.
Axelrad, G., & Feinerman, E. (2010). Allocation of treated wastewater among competitive farmers under asymmetric information. Water resources research, 46(1). https://dx.doi.org/10.1029/2008WR007687.
Badri, H., Ghomi, S. F., & Hejazi, T. H. (2017). A two-stage stochastic programming approach for value-based closed-loop supply chain network design. Transportation Research Part E: Logistics and Transportation Review, 105, 1-17. http://dx.doi.org/10.1016/j.tre.2017.06.012.
Birge, J. R., & Louveaux, F. (1997). Two-Stage Linear Recourse Problems. Introduction to Stochastic Programming, 155-197. 10.1007/0-387-22618-4_5.
Cadenas, J. M., & Verdegay, J. L. (1997). Using fuzzy numbers in linear programming. IEEE Transactions on systems, Man, and cybernetics, Part B (Cybernetics), 27(6), 1016-1022.
Castillo-Villar, K. K., Eksioglu, S., & Taherkhorsandi, M. (2017). Integrating biomass quality variability in stochastic supply chain modeling and optimization for large-scale biofuel production. Journal of cleaner production, 149, 904-918. https://doi.org/10.1016/j.jclepro.2017.02.123.
Dong, C., Huang, G., Tan, Q., & Cai, Y. (2014). Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model. Frontiers of Earth Science, 8, 70-80. https://doi.org/10.1007/s11707-013-0388-5.
Elgallal, M. M. (2017). Development of an approach for the evaluation of wastewater reuse options for arid and semi-arid area (Doctoral dissertation, University of Leeds).
Environmental criteria for reuse of wastewater and effluents (2016). Journal 535 (in Persian). http://seso.moe.org.ir.
Epelde, A. M., Cerro, I., Sánchez-Pérez, J. M., Sauvage, S., Srinivasan, R., & Antigüedad, I. (2015). Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrological Sciences Journal, 60(5), 825-843. https://dx.doi.org/10.1080/02626667.2014.967692.
Gao, Q. Z., Zhang, X., & Brendan, P. M. (2008). Study on water resources management in economic development in the water-shortage regions—a case study in the Shiyang River Basin. Arid Zone Res, 25, 607-614.
Gourbesville, P. (2008). Challenges for integrated water resources management. Physics and Chemistry of the Earth, Parts A/B/C, 33(5), 284-289. https://dx.doi.org/10.3390/w6072000.
Guo, P., Huang, G. H., Zhu, H., & Wang, X. L. (2010). A two-stage programming approach for water resources management under randomness and fuzziness. Environmental Modelling & Software, 25(12), 1573-1581. https://doi.org/10.1016/j.envsoft.2010.04.018.
Housh, M., Ostfeld, A., & Shamir, U. (2013). Limited multi-stage stochastic programming for managing water supply systems. Environmental Modelling & Software, 41, 53-64. http://dx.doi.org/10.1016/j.envsoft.2012.11.006.
Huang, G. H., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems, 17(2), 95-118.
Jiménez, B., Drechsel, P., Koné, D., Bahri, A., Raschid-Sally, L., & Qadir, M. (2010). Wastewater, sludge and excreta use in developing countries: an overview. Wastewater irrigation and health: assessing and mitigating risk in low-income countries, 3-29. https://dx.doi.org/10.4324/9781849774666.
Jury, W.A., Gardner, W.R., and Gardner, W.H. (1991). Soil Physics. John Wiley and Sons, Inc. New York, New York.
Khosh Akhlaq, R. & Shahraki, J. (2002). Estimation of domestic water demand function in Zahedan city. doctoral dissertation, Faculty of Administrative and Economic Sciences, University of Isfahan (In Persian).
Meng, C., Wang, X., & Li, Y. (2018). An optimization model for water management based on water resources and environmental carrying capacities: A case study of the Yinma River Basin, Northeast China. Water, 10(5), 565. https://doi.org/10.3390/w10050565.
Meng, C., Li, W., Cheng, R., & Zhou, S. (2021). An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China. Water, 13(9), 1318. https://doi.org/10.3390/w13091318.
Metcalf, E., Asano, T., Burton, F., Leverenz, H., Tsuchihashi, R., & Tchobanoglous, G. (2007). Water reuse: Issues, technologies, and applications. McGraw-Hill Education. https://www. acces sengi neeri nglib rary. com/conte nt/book/97800, 71459, 273.
Miloradov, M. V., Mihajlović, I., Vyviurska, O., Cacho, F., Radonić, J., Milić, N., & Spanik, I. (2014). Impact of wastewater discharges to Danube surface water pollution by emerging and priority pollutants in the vicinity of Novi sad, Serbia. Fresenius Environ. Bull, 23, 2137-2145.
Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy sets and systems, 157(1), 74-97. https://doi.org/10.1016/j.fss.2005.05.045.
Oron, G., Gillerman, L., Bick, A., Mnaor, Y., Buriakovsky, N., & Hagin, J. (2007). Advanced low quality waters treatment for unrestricted use purposes: imminent challenges. Desalination, 213(1-3), 189-198.
Papi, A., Pishvaee, M., Jabbarzadeh, A., & Ghaderi, S. F. (2018). Robust optimal crude oil supply chain planning and oilfield development under uncertainty: case study of the national Iranian South Oil company. Quarterly energy economics review, 14(58), 27-64 (in Persian). http://iiesj.ir/article-1-1008-en.html.
Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 206, 1-20. https://doi.org/10.1016/j.fss.2012.04.010.
Qadir, M., & Scott, C. A. (2010). Non-pathogenic trade-offs of wastewater irrigation. astewater Irrigation, 101. https://dx.doi.org/10.4324/9781849774666.
Qadir, M., Wichelns, D., Raschid-Sally, L., Minhas, P. S., Drechsel, P., Bahri, A., ... & van der Hoek, W. (2007). Agricultural use of marginal-quality water: Opportunities and challenges.
Rahman, A., Mojid, M. A., & Monika, I. A. (2017). Evaluation of CERES-Wheat model for wastewater irrigation and fertilizer interactions in wheat cultivation. In 2017 ASABE Annual International Meeting (p. 1).
American Society of Agricultural and Biological Engineers. https://dx.doi.org/10.13031/aim.201701174.
Ranjbar, Sakineh, & Maleksaedi, H. (2019). Identification of determinant factors of irrigation using water wells and untreated wastewater among vegetable farmers in the Sanandaj County. IRANIAN JOURNAL OF AGRICUTURAL ECONOMICS AND DEVELOPMENT RESEARCH, 50(2), 383-395. https://sid.ir/paper/396714/en
Sabohi, M. & Nobakht, M. (2008) Estimation of the water demand function of the new city of Pardis. Water and Wastewater, 2: 69-74 (in Persian).
Scheierling, S. M., Bartone, C., Mara, D. D., & Drechsel, P. (2010). Improving wastewater use in agriculture: An emerging priority. World Bank Policy Research Working Paper, (5412).
Scott, C. A., Faruqui, N. I., & Raschid-Sally, L. (2004). Wastewater use in irrigated agriculture: management challenges in developing countries. Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities, CABI Publishing, Wallingford, UK, pp1–10. https://dx.doi.org/10.1079/9780851998237.0001
Sun, J., Chen, Y., Zhang, Z., Wang, P., Song, X., Wei, X., & Feng, B. (2015). The spatio-temporal variations of surface water quality in China during the “Eleventh Five-Year Plan”. Environmental monitoring and assessment, 187(3), 1-12. https://doi.org/10.1007/s10661-015-4278-z.
Thomas, G. W., & McMahon, M. (1972). The relation between soil characteristics, water movement and nitrate contamination of ground water.
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems, 159(2), 193-214. https://doi.org/10.1016/j.fss.2007.08.010.
Wang, X., Yang, H., Cai, Y., Yu, C., & Yue, W. (2016). Identification of optimal strategies for agricultural nonpoint source management in Ulansuhai Nur watershed of Inner Mongolia, China. Stochastic environmental research and risk assessment, 30(1), 137-153. https://doi.org/10.1007/s00477-015-1043-3.
Winpenny, J., Heinz, I., Koo-Oshima, S., Salgot, M., Collado, J., Hernandez, F., & Torricelli, R. (2010). The wealth of waste: the economics of wastewater use in agriculture. Water Reports, (35).
Xia, J., Qiu, B., & Li, Y. (2012). Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water International, 37(5), 523-536. https://doi.org/10.1080/02508060.2012.724649.
Xie, Y. L., Huang, G. H., Li, W., Li, J. B., & Li, Y. F. (2013). An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China. Journal of environmental management, 127, 188-205. https://doi.org/10.1016/j.jenvman.2013.04.027.
Xie, Y. L., & Huang, G. H. (2014). Development of an inexact two-stage stochastic model with downside risk control for water quality management and decision analysis under uncertainty. Stochastic environmental research and risk assessment, 28(6), 1555-1575. https://doi.org/10.1007/s00477-013-0834-7.
Xu, Y., & Qin, X. S. (2010). Agricultural effluent control under uncertainty: an inexact double-sided fuzzy chance-constrained model. Advances in Water Resources, 33(9), 997-1014. https://dx.doi.org/10.1016/j.advwatres.2010.06.002.
Yazdani, S., Hosseini, S. S., Saleh, A., & Sasoli, M. R. (2014). Investigating social acceptance of crops irrigated with treated wastewater in the south of Tehran province. Iranian Journal Agricultural Economics and Development Research, 46(1), 1-11 (in Persian). https://sid.ir/paper/146411/fa
Yazdani, S., Hasanvand, M., Rafiei, H., & Saleh, I. (2021). Determining the optimal tariff for treated wastewater in the agricultural sector in the south of tehran province. Iranian Journal Agricultural Economics and Development Research, 53(2), 91-108 (in Persian). https:// 10.22059/ijaedr.2021.314897.668981
Yousefi, M., Banihabib, M. E., Soltani, J., & Roozbahani, A. (2018). Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater. Agricultural water management, 208, 224-231. https://dx.doi.org/10.1016/j.agwat.2018.06.025.
Zeng, X. T., Li, Y. P., Huang, G. H., & Liu, J. (2017). Modeling of water resources allocation and water quality management for supporting regional sustainability under uncertainty in an arid region. Water Resources Management, 31, 3699-3721. https://dx.doi.org/10.1007/s11269-017-1696-4.
Zhang, L., & Li, C. Y. (2014). An inexact two-stage water resources allocation model for sustainable development and management under uncertainty. Water resources management, 28(10), 3161-3178. https://doi.org/10.1007/s11269-014-0661-8.
Zhou, X., Huang, G. H., Zhu, H., & Yan, B. (2015). Two-stage chance-constrained fractional programming for sustainable water quality management under uncertainty. Journal of Water Resources Planning and Management, 141(5), 04014074. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000470.