الگوی بهینه کشت با فرض عدم قطعیت و استفاده از مدلهای برنامه ریزی ریاضی و آرمانی فازی(مطالعه موردی شهرستان سقز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه کشاورزی، دانشگاه پیام نور، تهران ،ایران

2 گروه اقتصاد کشاورزی،دانشگاه پیام نور، تهران ، ایران

3 دانشکده اقتصاد، حسابداری و مدیریت،دانشگاه یزد، یزد ،ایران

4 گروه کشاورزی، دانشگاه پیام نور، تهران ایران

5 گروه کشاورزی،دانشگاه پیام نور، تهران ایران

10.22059/ijaedr.2025.385654.669330

چکیده

امروزه تعیین الگوی بهینه کشت یکی از مهم ترین و کارآمدترین روش های مدیریت تولیدات زراعی و همچنین افزایش بهره وری نهاده های تولید می باشد. این تحقیق با هدف بهینه سازی الگوی کشت در سه سناریوی مختلف برای شهرستان سقز، با استفاده از روش‌های برنامه ریزی تک هدفه و برنامه ریزی چندهدفه آرمانی فازی انجام شده است. در سناریوی اول، میزان سود ناخالص به اندازه‌ی 5/0 درصد کاهش می‌یابد. اما از سوی دیگر مصرف آب، کودهای شیمیایی و سموم شیمیایی در راستای اهداف از پیش تعیین شده به ترتیب 7/10، 1/11 و 8/12 درصد کاهش می یابد. در سناریوی دوم سود ناخالص به اندازه‌ی 4/19 درصد کاهش می یابد. از سوی دیگر، مصرف آب، کودهای شیمیایی و سموم شیمیایی در راستای اهداف پژوهش به ترتیب 7/20، 18 و 3/14 درصد کاهش می یابد. در سناریوی سوم، با اولویت به حداقل رساندن مصرف آب و به حداقل رساندن مصرف کودها و سموم شیمیایی و سپس به حداکثر رساندن درآمد ناخالص، میزان درآمد ناخالص به اندازه‌ی 22 درصد کاهش می یابد. همچنین، مصرف کودهای شیمیایی، سموم شیمیایی و آب در جهت اهداف از پیش تعیین شده، به ترتیب 2/17، 6/52 و 1/27 درصد کاهش می یابد. پیشنهاد می شود با توجه به اولویت هر یک از سناریوهای اقتصادی، حفظ محیط زیست و کاهش مصرف آب از منظر سیاستگذار، مدل بهینه کشت انتخاب شود.

کلیدواژه‌ها

موضوعات


Extended Abstract

Introduction

Today, with the constraints of water and cultivable land, as well as environmental and health issues related to the use of fertilizers and chemical pesticides in agriculture, optimal management of cropping patterns seems necessary. This can lead to cost reduction, maintenance or increase in farmers' income, and minimize the use of production inputs, especially water, various fertilizers, and chemical pesticides. The design of an optimal cropping pattern should consider water consumption, economic indicators, types of required products, profitability of products, and environmental preservation. It can also increase the efficiency of essential production resources such as water, soil, human resources, machinery, and other inputs, and provide the highest income for farmers. Therefore, the present research aims to optimize the cropping pattern in three different scenarios for the Saqqez county, using single-objective and multi-objective fuzzy ideal planning methods.

 

Research Method

Among the agricultural products of the county, seven products were considered as main products for determining the optimal cultivation area. These products, including wheat, barley, potatoes, alfalfa, sugar beets, and forage corn, constitute the major and main part of all agricultural products cultivated in Saqqez county. The required information was obtained from the management of the Agricultural Jihad and Natural Resources and also the management of water resources in Saqqez county. In each scenario, different weights have been considered for maximizing gross income, minimizing water consumption, chemical fertilizers, and pesticides. So that in each scenario, the goals are aligned with different weights towards the overall goals of preserving water, environmental, and economic resources. In this research, GAMS and EXCEL software have been used for data analysis and mathematical planning.

Fuzzy set theory is a mathematical theory for modeling uncertainty and uncertainty, and is one of the most useful approaches that enables the expression and consideration of these uncertainties (Amini, 1392). Over the past few decades, this theory has been widely embraced by researchers and scientific communities, and has had numerous applications in various aspects of agricultural planning and farm management. It is generally the most common method for discussing and analyzing uncertainties in group decision-making and multi-criteria analysis (Amini, 1392). In a fuzzy decision-making environment, the decision maker's goals are always expressed in a fuzzy manner, and resource constraints may also be expressed in a fuzzy or definite manner.

 

Results

The results show that in all three scenarios, the optimal state compared to the current state, the levels under cultivation decrease by 8.14%, 2.14%, and 2.14% respectively. In the fuzzy ideal pattern in the first scenario, where a higher weight is considered for the ideal increase in gross income, gross income decreases by 5.0%, which, considering its negligible amount, can be said that gross income is largely preserved. Also, water consumption, fertilizer consumption, and chemical pesticide consumption have decreased by 7.10%, 1.11%, and 8.12% respectively, indicating a desirable change towards the ideals. In this scenario, the area under cultivation of wheat, barley, canola, alfalfa, and forage corn decreases by 5.13%, 66%, 4.21%, 8.12%, and 7.76% respectively, while on the other hand, the area under cultivation of sugar beets and potatoes increases by 4.1% and 6.83% respectively. In the second scenario, where the weight of the ideal of reducing water consumption is increased, gross income decreases by 4.19%. Also, water consumption, fertilizer consumption, and chemical pesticide consumption have decreased by 7.20%, 18%, and 3.14% respectively in the direction of the desired ideals. In this scenario, the area under cultivation of wheat, alfalfa, and forage corn decreases by 1.24%, 3.25%, and 2.23% respectively, while on the other hand, the area under cultivation of barley, sugar beets, canola, and potatoes increases by 4.8%, 8.38%, 16.5%, and 8.1% respectively. In the third scenario, with an increase in the importance coefficient of reducing fertilizer and chemical pesticide consumption, the income decreases by 33%. Also, water consumption, fertilizer consumption, and chemical pesticide consumption have decreased by 2.17%, 6.52%, and 1.27% respectively. In the third scenario, the area under cultivation of wheat, sugar beets, potatoes, and alfalfa decreases by 8.58%, 6.1%, 7.7%, and 39.2% respectively, while on the other hand, the area under cultivation of barley, canola, and forage corn increases by 1.220%, 1.12%, and 9.132% respectively.

 

Conclusion

Based on the results obtained in all three scenarios, the total cultivated area in the optimal state decreases compared to the current state. Therefore, alongside achieving the research goals, significant amounts of land are freed up and can be allocated to cultivating new crops that align with major economic and environmental objectives. The choice of optimal cultivation pattern depends on the primary goal and agricultural policies of the region. Therefore, if the goals are in line with economic policies and increasing farmers' income, scenario one is recommended; if the main goal is to conserve water resources and reduce water consumption, scenario two is recommended; and finally, if the policies are aimed at environmental conservation and health, scenario three is suggested. Therefore, it is recommended to select the optimal cultivation model based on the priority of each economic scenario, environmental conservation, and water consumption reduction.

Agh, M. Javali, R. Karamatzadeh, A. and Shirani, F. 2014. Determining the crop cultivation pattern with emphasis on the policy of reducing fertilizer and water consumption in Mazandaran province (case study: Behshahr city). Journal of Soil Management and Sustainable Production, 5(3): 247-295.
Alipour, Majid. Musapour, Shoja and Modi, Hossein. 1401. Determining the optimal pattern of cultivation using fuzzy ideal planning, case study: Razavi Khorasan Province. Place of publication: National conference of new ideas in agriculture, environment and tourism. (In Persian).
Amini, A.(2013). Planning and Optimal Allocation of Agriucltural Production Resources under Uncertainty Application of Multi-Objective Fuzzy Goal Programming approach. Geography and Environmental Planning, 24(3), 106-128. (In Persian)
Baghbanian, Mustafa., Taheri, Abuzar ; Kadirzadeh, Hamed (2022). Determining the cultivation pattern in the cities of Qorveh and Dehgolan in Kurdistan province with the approach of using plants with minimum water requirement. Iranian Journal of Irrigation and Drainage, Number 5, Volume 16: 1044-1054. (In Persian).
Chen, Y., Zhou, Y., Fang, S., Li, M., Wang, Y., & Cao, K. 2022. Crop pattern optimization for the coordination between economy and environment considering hydrological uncertainty. Science of the Total Environment, 809, 151152.
Dehghanizadeh, M., Bakhtiari, S., & Daekarimzadeh, S. 2021. Simultaneous Fulfillment of the Agricultural Sector Economic Goals, Affected by Limited Water Resources in the Framework of the Iran’s Sixth Development Plan: A Case Study of Yazd Province. Iranian Journal of Agricultural Economics and Development Research52(2), 275-285. (In Persian).
Dires Tewabe & Mekete Dessie.2020. Enhancing water productivity of different field crops using deficit irrigation in the Koga Irrigation project, Blue Nile Basin, Ethiopia Cogent Food & Agriculture (2020), 6: 1757226.
Fan L, Niu H, Yang X, Qin W, Bento Célia PM, Ritsema CJ, et al. Factors affecting farmers’ behaviour in pesticide use: Insights from a field study in northern China. Science of the Total Environment. 2015, 537:360-68.
Halkidis I. and Papadimos D. 2007. Technical report of life environment project: Ecosystem based water resources manegment to minimize environmental impacts from agriculture using state of the art modeling tools in Strymonas basian. Greek Biotope/Wetland Center (EKBY).
Haq, F., Parveen, A., Hussain, S., & Hussain, A. 2020. Optimization of the Cropping Pattern in District Hunza, Gilgit-Baltistan. Sarhad Journal of Agriculture, 36(2).
layani, G., Darzi, A., Motevali, A., Bagherian- Jelodar, M., Kaikha, M., Nadi, M., Firouzjaeian, A. A., AMIRNEJAD, H., & Pirdashti, H. 2023. Developing environmentally friendly cropping pattern with a multi-objective planning approach in Sari County. Agricultural Economics Research, 15(1), 96-79. (In Persian).
Majnouni Haris, Abolfazl and Asadi, Ismail. 2012. Principles and concepts of irrigation. Omid Publications, Tabriz. (In Persian).
Mirzaei, Shakiba. Zakarinia Mehdi, Shahabifar Mehdi and Sharifan Hossein. 2015. Determining the optimal cultivation pattern in the irrigation and drainage network of Golestan dam using genetic algorithm. Irrigation Science and Engineering Quarterly. Volume 04, Number 3, Fall 96: 181-190. (In Persian).
Oliveira CM, Auad AM, Mendes SM, Frizzas MR. .2014. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection, 56: 50-54.
Osama, S., Elkholy, M. and Kansoh, R.M. 2017. Optimization of the cropping pattern in Egypt. Alexandria Engineering Journal, 56:557-566.
Panahi, A., & Falsafian, A. (2021). Optimization of the crop cultivation in the Shabestar plain under water constraint. JOURNAL OF WATER AND SOIL RESOURCES CONSERVATION, 10(4 ), -. SID. https://sid.ir/paper/690035/en. (In Persian).
Sani, Fatemeh and Dashti Qadir. 1400. Determining the optimal cultivation pattern compatible with water scarcity under conditions of uncertainty with a stable ideal planning approach. Danesh Water and Soil Journal, Volume 31, Number 1: 3-15. (In Persian).
Tamiz, M., Jones, D. 2011. Practical Goal Programming. Springer. Zeng, X., kang.S. Li, F., Zhang, L. And Guo, p. 2010. Fuzzy multi objective linear programming applying to crop area planning. Agricultural Water Management, 98: 134-142.
Tewabe, D., & Dessie, M. (2020). Enhancing water productivity of different field crops using deficit irrigation in the Koga Irrigation project, Blue Nile Basin, Ethiopia. Cogent Food & Agriculture, 6(1). https://doi.org/10.1080/23311932.2020.1757226.
Tiwari R.N., Dharmar S., and Rao J.R. 1986. Priority structure in fuzzy goal programming. Fuzzy Sets and Systems, 19(3): 251-259. https://doi.org/10.1016/0165-0114(86)90054-0.
Valizadegan,E.,Dindar Sooha,A.(2021). Model of optimal allocation of water and land to agricultural crops in deterministic and stochastic conditions., Journal of Water and Soil Resources Conservation,10(3),31-46. (In Persian)