Abedi, M. J. Najafi, P. (2001). Use of treated wastewater in agriculture. National Committee for Irrigation and Drainage of Iran, Ministry of Energy, First Edition, Tehran (in Persian).
Amini, M. And Ebrahimian, H. (2016) Investigation of nitrate leaching and nitrogen uptake by maize under irrigation conditions with raw and treated effluent. Journal of Water and Soil (Agricultural Sciences and Industries). Volume 31. (3): 785-796 (in Persian).
http://doi.10.22067/jsw.v31i3.52789.
Axelrad, G., & Feinerman, E. (2010). Allocation of treated wastewater among competitive farmers under asymmetric information.
Water resources research, 46(1).
https://dx.doi.org/10.1029/2008WR007687.
Badri, H., Ghomi, S. F., & Hejazi, T. H. (2017). A two-stage stochastic programming approach for value-based closed-loop supply chain network design.
Transportation Research Part E: Logistics and Transportation Review, 105, 1-17.
http://dx.doi.org/10.1016/j.tre.2017.06.012.
Birge, J. R., & Louveaux, F. (1997). Two-Stage Linear Recourse Problems. Introduction to Stochastic Programming, 155-197. 10.1007/0-387-22618-4_5.
Cadenas, J. M., & Verdegay, J. L. (1997). Using fuzzy numbers in linear programming. IEEE Transactions on systems, Man, and cybernetics, Part B (Cybernetics), 27(6), 1016-1022.
Castillo-Villar, K. K., Eksioglu, S., & Taherkhorsandi, M. (2017). Integrating biomass quality variability in stochastic supply chain modeling and optimization for large-scale biofuel production.
Journal of cleaner production, 149, 904-918.
https://doi.org/10.1016/j.jclepro.2017.02.123.
Dong, C., Huang, G., Tan, Q., & Cai, Y. (2014). Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model.
Frontiers of Earth Science, 8, 70-80.
https://doi.org/10.1007/s11707-013-0388-5.
Elgallal, M. M. (2017). Development of an approach for the evaluation of wastewater reuse options for arid and semi-arid area (Doctoral dissertation, University of Leeds).
Environmental criteria for reuse of wastewater and effluents (2016). Journal 535 (in Persian).
http://seso.moe.org.ir.
Epelde, A. M., Cerro, I., Sánchez-Pérez, J. M., Sauvage, S., Srinivasan, R., & Antigüedad, I. (2015). Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality.
Hydrological Sciences Journal, 60(5), 825-843.
https://dx.doi.org/10.1080/02626667.2014.967692.
Gao, Q. Z., Zhang, X., & Brendan, P. M. (2008). Study on water resources management in economic development in the water-shortage regions—a case study in the Shiyang River Basin. Arid Zone Res, 25, 607-614.
Gourbesville, P. (2008). Challenges for integrated water resources management.
Physics and Chemistry of the Earth, Parts A/B/C, 33(5), 284-289.
https://dx.doi.org/10.3390/w6072000.
Guo, P., Huang, G. H., Zhu, H., & Wang, X. L. (2010). A two-stage programming approach for water resources management under randomness and fuzziness.
Environmental Modelling & Software, 25(12), 1573-1581.
https://doi.org/10.1016/j.envsoft.2010.04.018.
Huang, G. H., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems, 17(2), 95-118.
Jiménez, B., Drechsel, P., Koné, D., Bahri, A., Raschid-Sally, L., & Qadir, M. (2010). Wastewater, sludge and excreta use in developing countries: an overview. Wastewater irrigation and health: assessing and mitigating risk in low-income countries, 3-29.
https://dx.doi.org/10.4324/9781849774666.
Jury, W.A., Gardner, W.R., and Gardner, W.H. (1991). Soil Physics. John Wiley and Sons, Inc. New York, New York.
Khosh Akhlaq, R. & Shahraki, J. (2002). Estimation of domestic water demand function in Zahedan city. doctoral dissertation, Faculty of Administrative and Economic Sciences, University of Isfahan (In Persian).
Meng, C., Wang, X., & Li, Y. (2018). An optimization model for water management based on water resources and environmental carrying capacities: A case study of the Yinma River Basin, Northeast China.
Water, 10(5), 565.
https://doi.org/10.3390/w10050565.
Meng, C., Li, W., Cheng, R., & Zhou, S. (2021). An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China.
Water, 13(9), 1318.
https://doi.org/10.3390/w13091318.
Metcalf, E., Asano, T., Burton, F., Leverenz, H., Tsuchihashi, R., & Tchobanoglous, G. (2007). Water reuse: Issues, technologies, and applications. McGraw-Hill Education. https://www. acces sengi neeri nglib rary. com/conte nt/book/97800, 71459, 273.
Miloradov, M. V., Mihajlović, I., Vyviurska, O., Cacho, F., Radonić, J., Milić, N., & Spanik, I. (2014). Impact of wastewater discharges to Danube surface water pollution by emerging and priority pollutants in the vicinity of Novi sad, Serbia. Fresenius Environ. Bull, 23, 2137-2145.
Oron, G., Gillerman, L., Bick, A., Mnaor, Y., Buriakovsky, N., & Hagin, J. (2007). Advanced low quality waters treatment for unrestricted use purposes: imminent challenges. Desalination, 213(1-3), 189-198.
Papi, A., Pishvaee, M., Jabbarzadeh, A., & Ghaderi, S. F. (2018). Robust optimal crude oil supply chain planning and oilfield development under uncertainty: case study of the national Iranian South Oil company. Quarterly energy economics review, 14(58), 27-64 (in Persian).
http://iiesj.ir/article-1-1008-en.html.
Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach.
Fuzzy sets and systems, 206, 1-20.
https://doi.org/10.1016/j.fss.2012.04.010.
Qadir, M., Wichelns, D., Raschid-Sally, L., Minhas, P. S., Drechsel, P., Bahri, A., ... & van der Hoek, W. (2007). Agricultural use of marginal-quality water: Opportunities and challenges.
Rahman, A., Mojid, M. A., & Monika, I. A. (2017). Evaluation of CERES-Wheat model for wastewater irrigation and fertilizer interactions in wheat cultivation. In 2017 ASABE Annual International Meeting (p. 1).
Ranjbar, Sakineh, & Maleksaedi, H. (2019). Identification of determinant factors of irrigation using water wells and untreated wastewater among vegetable farmers in the Sanandaj County. IRANIAN JOURNAL OF AGRICUTURAL ECONOMICS AND DEVELOPMENT RESEARCH, 50(2), 383-395.
https://sid.ir/paper/396714/en
Sabohi, M. & Nobakht, M. (2008) Estimation of the water demand function of the new city of Pardis. Water and Wastewater, 2: 69-74 (in Persian).
Scheierling, S. M., Bartone, C., Mara, D. D., & Drechsel, P. (2010). Improving wastewater use in agriculture: An emerging priority. World Bank Policy Research Working Paper, (5412).
Scott, C. A., Faruqui, N. I., & Raschid-Sally, L. (2004). Wastewater use in irrigated agriculture: management challenges in developing countries. Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities, CABI Publishing, Wallingford, UK, pp1–10.
https://dx.doi.org/10.1079/9780851998237.0001
Sun, J., Chen, Y., Zhang, Z., Wang, P., Song, X., Wei, X., & Feng, B. (2015). The spatio-temporal variations of surface water quality in China during the “Eleventh Five-Year Plan”.
Environmental monitoring and assessment, 187(3), 1-12.
https://doi.org/10.1007/s10661-015-4278-z.
Thomas, G. W., & McMahon, M. (1972). The relation between soil characteristics, water movement and nitrate contamination of ground water.
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning.
Fuzzy sets and systems, 159(2), 193-214.
https://doi.org/10.1016/j.fss.2007.08.010.
Wang, X., Yang, H., Cai, Y., Yu, C., & Yue, W. (2016). Identification of optimal strategies for agricultural nonpoint source management in Ulansuhai Nur watershed of Inner Mongolia, China.
Stochastic environmental research and risk assessment, 30(1), 137-153.
https://doi.org/10.1007/s00477-015-1043-3.
Winpenny, J., Heinz, I., Koo-Oshima, S., Salgot, M., Collado, J., Hernandez, F., & Torricelli, R. (2010). The wealth of waste: the economics of wastewater use in agriculture. Water Reports, (35).
Xia, J., Qiu, B., & Li, Y. (2012). Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China.
Water International,
37(5), 523-536.
https://doi.org/10.1080/02508060.2012.724649.
Xie, Y. L., Huang, G. H., Li, W., Li, J. B., & Li, Y. F. (2013). An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China
. Journal of environmental management, 127, 188-205.
https://doi.org/10.1016/j.jenvman.2013.04.027.
Xie, Y. L., & Huang, G. H. (2014). Development of an inexact two-stage stochastic model with downside risk control for water quality management and decision analysis under uncertainty.
Stochastic environmental research and risk assessment, 28(6), 1555-1575.
https://doi.org/10.1007/s00477-013-0834-7.
Yazdani, S., Hosseini, S. S., Saleh, A., & Sasoli, M. R. (2014). Investigating social acceptance of crops irrigated with treated wastewater in the south of Tehran province. Iranian Journal Agricultural Economics and Development Research, 46(1), 1-11 (in Persian).
https://sid.ir/paper/146411/fa
Yazdani, S., Hasanvand, M., Rafiei, H., & Saleh, I. (2021). Determining the optimal tariff for treated wastewater in the agricultural sector in the south of tehran province. Iranian Journal Agricultural Economics and Development Research, 53(2), 91-108 (in Persian).
https:// 10.22059/ijaedr.2021.314897.668981
Yousefi, M., Banihabib, M. E., Soltani, J., & Roozbahani, A. (2018). Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater.
Agricultural water management, 208, 224-231.
https://dx.doi.org/10.1016/j.agwat.2018.06.025.
Zeng, X. T., Li, Y. P., Huang, G. H., & Liu, J. (2017). Modeling of water resources allocation and water quality management for supporting regional sustainability under uncertainty in an arid region.
Water Resources Management, 31, 3699-3721.
https://dx.doi.org/10.1007/s11269-017-1696-4.
Zhang, L., & Li, C. Y. (2014). An inexact two-stage water resources allocation model for sustainable development and management under uncertainty.
Water resources management, 28(10), 3161-3178.
https://doi.org/10.1007/s11269-014-0661-8.
Zhou, X., Huang, G. H., Zhu, H., & Yan, B. (2015). Two-stage chance-constrained fractional programming for sustainable water quality management under uncertainty.
Journal of Water Resources Planning and Management, 141(5), 04014074.
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000470.