Document Type : Research Paper
Authors
1
PH.D. Candidate, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar university of Kerman, Kerman, Iran
2
Professor, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar university of Kerman, Kerman, Iran
3
Assistant Professor, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar university of Kerman, Kerman, Iran
4
Associate Professor, Department of Agricultural Economics, Faculty of Agriculture, Shahid Bahonar university of Kerman, Kerman, Iran
Abstract
Achieving food and water security is one of the most important goals of policymakers in different countries. Water scarcity in Iran could be one of the major food security challenges in the future. For this purpose, climatic zoning was performed using the Domarten method. After calculating the water requirement using CROPWAT software; the amount of virtual water, water footprint, water productivity, volume of water consumed by each crop in each zone and the optimal food gap in different climates were calculated. According to the results; The per capita water footprint of the agricultural sector in hyper-arid, desert arid, semi-arid, Mediterranean and humid climates and Iran is 1611.97, 1228.09, 665.83, 884.01, 600.21 and 998.20cubic meters, respectively. In addition, the intensity of water consumption within the 5 climatic zones and Iran is 64.89, 88.03, 63.19, 41.01, 56.38 and 65.48 %, respectively. Net virtual water imports for each zone show that desert arid and humid zones are exporters of virtual water and hyper-arid, semi-arid and Mediterranean zones are importers of virtual water.
The results show a contradiction between the realization of water security and food security in terms of quantity. The results showed that if the goal is to establish water security; by increasing the net import of virtual water (in the case of high-consumption products with low water efficiency), the intensity of pressure on domestic water resources in each area could be reduced. But if the goal is self-sufficiency; If the current situation does not change (crop composition in cropping pattern, yield and irrigation efficiency in each zone), more pressure will be put on water resources. Therefore, in order to achieve the goals of self-sufficiency and water security coefficients at the same time; It is recommended to increase the yield, improve the irrigation efficiency, formulate a suitable cultivation pattern and allocate water resources according to water productivity and its yield in each zone.
Keywords
Main Subjects